
Three-Terminal Capacitance–Voltage Measurements of

a Pentacene Field-Effect Transistor during Operation

Yuya Tanakaa, Yutaka Noguchia,b,∗, Michael Krausc, Wolfgang Brüttingc,
Hisao Ishiia,b,

aGraduate School of Advanced Integration Science, Chiba University, 1-33 Yayoi-cho,

Inage-ku, Chiba 263-8522, Japan
bCenter for Frontier Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba

263-8522, Japan
cInstitute of Physics, University of Augsburg, 86135 Augsburg, Germany

Abstract

We propose a modified measurement technique of capacitance for three-

terminal devices and apply this method for the evaluation of the channel

formation in pentacene field-effect transistors. An additional structure in

the capacitance–voltage curves clearly shows the channel formation from the

saturation to the linear region in an operating transistor which has not been

directly observed in conventional methods. Based on the amount of accumu-

lated charge in the channel region, the validity of the gradual channel approx-

imation model and the usability of a buffer layer are discussed. This method

enables the detailed investigation of carrier behaviors in organic transistors

through appropriate evaluation of the channel formation process during op-

eration.
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1. Introduction

Organic field-effect transistors (OFETs) are promising devices because

of their favorable features such as flexibility and low cost fabrication [1, 2].

Much effort has been devoted to increase in performance through insertion

of buffer layer at organic/gate dielectric interface and optimization of elec-

trodes and insulator layer [3]. In addition, the bias-induced instability has

attracted attention as the issue to be overcome [4]. To advance these efforts

toward practical use, it is important to understand the carrier behaviors in

OFETs. Generally, the carrier behaviors in OFETs are described as follows:

(i) carriers are injected from the source electrode by applied gate voltage

(VGS) and accumulated immediately under the source electrode; (ii) the ac-

cumulated carriers spread laterally and forms the conduction channel along

the organic/gate dielectric interface; (iii) the charge carrier travels from the

source to the drain electrode due to the applied drain voltage (VDS). Because

all of these processes induce the variation of the carrier distribution in the

device, monitoring the capacitance is a good measure to evaluate the carrier

dynamics in the device.

Capacitance–voltage (C–V ) relationships obtained by capacitance mea-

surements, such as impedance spectroscopy (IS) and displacement current

measurement (DCM), have been measured in organic metal-insulator-semiconductor

(MIS) diodes and OFETs [5, 6, 7, 8, 9]. The MIS structure is a model device

for transistor and suitable to evaluate the injection and accumulation prop-
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erties corresponding to (i) in the previous paragraph. However, the channel

formation process is unavailable to be evaluated in MIS structure. Even

in FET structures, conventional C–V techniques have been performed with

connecting the source and drain electrodes to the ground during C–V mea-

surements [6, 7, 8]. Because of lacking VDS, it is impossible to examine the

VDS dependence of the behaviors of accumulated charges. This difficulty is

attributed to the fact that C–V techniques are two-terminal measurement

methods while OFETs have three electrodes. Thus the C–V methods with

application of VDS are required to elucidate the channel formation process

during transistor operation.

In a recent study, Majima et al. successfully obtained C–V relationship

by DCM during transistor operation by using simultaneous measurements of

the source and drain currents [10, 11, 12]. Basically, in DCM, the triangular

wave voltage is applied to the gate electrode and current response is mea-

sured. In the case of DCM proposed by Majima et al., a high frequency of the

triangular gate voltage is necessary due to the limitation of dynamic range.

This is because the intensity of the displacement current, which is propor-

tional to the frequency of the triangular voltage, should be comparable to the

drain-to-source current; this restricts the range of the available measurement

frequencies. In order to understand the channel formation process in detail,

the limitation of frequency should be removed. Furthermore, their approach

is specific to DCM and cannot be applied to IS, which is a more common

method as capacitance measurement.

In this study, we proposed a three-terminal C–V method where an iso-

lated battery source is used to apply VDS. This method allows us to directly
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and easily obtain the C–V relationships with high signal-to-noise ratio dur-

ing transistor operation at any frequencies. In a pentacene (Pn)-based OFET

with a tetratetracontane (TTC; C44H90) surface treatment on the SiO2 sub-

strate, Pn/TTC-FET, an additional structure in the C–V curves that re-

flects the variation of the capacitance from the saturation to linear region

was clearly observed which has not appeared in conventional C–V measure-

ments. From the analysis of the results of three-terminal C–V measurement,

the validity of the gradual channel approximation (GCA) model and effect of

buffer layer are discussed. Because these evaluations cannot be conducted in

conventional C–V setups, the three-terminal C–V method allows for the de-

tailed investigation of the operating mechanism and performance assessment

of OFETs.

2. Experimental

In C–V measurements, the scanning bias, for example, a combined AC

and DC voltages in IS and triangular wave voltages in DCM, are applied to

the gate electrode in order to evaluate the carrier accumulation process in

organic/dielectric interface. We expand the function of these conventional C–

V measurements by inserting the drain voltage source into its measurement

circuit. Figure 1(a) shows the proposed measurement setup for capacitance

which includes an isolated battery source to apply VDS, named as three-

terminal C–V method. As the battery circuit is electrically isolated from

the gate electrode, AC current in IS and displacement current in DCM can

be measured precisely during transistor operation.

In three-terminal C–V method, VGS is changed under a constant VDS.
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Therefore, the observed C–V characteristics corresponds to the variation of

the capacitance in IDS–VGS (transfer) curve. By changing the VDS, the charge

injection and channel formation processes are investigated in more detail by

comparing with transfer curve.

Figure 1(a) shows the FET structure with top contact geometry. A heav-

ily doped p+-type Si wafer (resistivity < 0.02 Ω · cm) was used as the FET

substrate (gate electrode). The thickness of the oxide layer was 300 nm. A

30-nm-thick TTC layer [Fig. 1(b)] was deposited on the SiO2/p
+-Si sub-

strate as the insulating layer and annealed at 350 K for 10 min in a glove

box filled with pure nitrogen. Figure 1(c) shows the AFM image of the

TTC (30 nm) on the SiO2/p
+-Si substrate (top) and the cross-section view

of the TTC surface along the solid line in the AFM image (bottom). The

step height (≈ 5.9 nm) nearly corresponds to the molecular length of TTC,

suggesting that the TTC molecules stand up with full coverage of the SiO2

substrate. On this smooth TTC surface, a 100-nm-thick pentacene (Pn) layer

[Fig. 1(b)] was evaporated, and finally, gold was deposited as the source and

drain electrodes. The device was transferred to the glove box for electrical

measurements without exposure to air. The channel length (L) and width

(W ) were 120 µm and 3 mm, respectively. The areas of the source and drain

electrodes were both 9 mm2. The area of the Pn layer was the same as the

total area of the electrodes plus channel region.

The three-terminal C–V method was applied to two types of OFETs,

Pn/TTC-FET which has TTC buffer layer on SiO2 and Pn-FET without

TTC layer. The amplitude of the AC bias was set to be 0.1 V and the DC

bias was varied from 10 V to −40 V at a frequency of 2 Hz for Pn/TTC-
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FET and 5 Hz for Pn-FET. VDS was changed from 0 V to −46.1 V by ca.

9 V steps. Capacitance–frequency (C–f ) curves were also obtained by the

proposed method at various f ranging from 1 Hz to 105 Hz (not shown). In

this study, we focus on the variation of capacitance in static state by setting

the frequencies of 2 Hz or 5 Hz.

3. Results and discussion

3.1. Three-terminal C–V measurement of operating OFET

Figure 2(a) shows the C–V curves in the operating Pn/TTC-FET and

Fig. 2(b) presents the IDS–VGS (transfer) curves. The circles in Figs. 2(a)

and 2(b) indicate the results for VDS = 0. That is, the C–V measurement

was performed using the conventional setup: VGS was applied to the gate

electrode and both the source and drain electrodes were connected to the

ground. In Fig. 2(a), the device was completely depleted near VGS = 10

V because the capacitance was constant at the smallest value (Cdep). With

a decrease in VGS, the capacitance began to increase due to hole injection

from the source and drain electrodes to the Pn layer. Finally, because the

injected holes accumulated at the whole Pn/TTC interface, the measured

capacitance remained constant in the negative VGS region at the largest value

(Cacc). During the scanning of VGS, IDS did not flow as shown in Fig. 2(b).

The inverted triangles in Fig. 2(a) indicate the results for VDS = −28.0 V

by using the three-terminal C–V setup in Fig. 1(a). The spectrum is divided

into three parts: region (I), (II) and (III). In region (I), the capacitance nearly

corresponds to Cdep from VGS = 1–3 V, indicating the device in the depletion

region. In this region, IDS does not flow because there are no free carriers in
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the device [Fig. 2(b)]. The variations of capacitance and IDS at the voltages

higher than 3 V are originated from electron injection as discussed later.

With scanning VGS to the negative voltage side, the capacitance increases

and reaches Cinj [Fig. 2(a)], which is the estimated capacitance when the

holes accumulate immediately under the source electrode [Fig. 2(d)]. In

this region, the holes are injected only from the source electrode because of

VDS. Upon further scanning of VGS to the negative side, results show gradual

increase in the capacitance in region (II) [Fig. 2(a)] and IDS starts to flow

at the beginning of this region, suggesting the formation of a conduction

channel. The capacitance is roughly saturated at Cchn, which is the calculated

capacitance when the injected holes accumulate under the source electrode

and channel region [Fig. 2(e)]. These results clearly indicate that the pinch-

off occurs in this region; i.e. IDS in region (II) [Fig. 2(b)] belongs to the

saturation region. Thus, the variation of the capacitance from Cinj to Cchn

can be explained as the move of the pinch-off point from the edge of the

source electrode to that of the drain electrode. With a further decrease in

VGS, the capacitance begins to increase again in region (III), suggesting hole

accumulation under the drain electrode. Finally, the capacitance becomes

constant at Cacc. This situation corresponds to the linear region because a

charge sheet is completely formed at the whole Pn/TTC interface. In this

way, our proposed technique reveals the processes in Pn/TTC-FET while the

injected carrier forms the conduction channel which has not been directly

observed in conventional setup.
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3.2. Charge accumulation process in channel region

As described in previous section, the variation of capacitance observed by

three-terminal C–V method reflects the channel formation process during

the transistor operation. Here, we would like to focus on the analysis of

the amount of the charge (Q) in channel region. Figure 3(a) shows the VDS

dependence of C–V curves at various VDS (ranging from 0 V to −37.6 V).

Figure 3(b) indicates the transfer curves for corresponding VDS. This result

implies that charge accumulation process strongly depends on the applied

VDS.

When VDS was set to be −9.6 V, only a weak shoulder structure is ob-

served at VGS = 0 during the transition of capacitance from Cinj to Cchn. This

is because the holes rapidly accumulate under the drain electrode. With de-

creasing VDS, the region of the gradual increase from Cinj to Cchn becomes

wider and VGS at which the capacitance reaches Cacc shifts to the negative

VGS side since the negative VDS prevents from the hole injection from the

drain electrode. These results imply that pinch-off voltage (VPO) is changed

by the applied VDS and VGS.

The amount of injected holes (Q) is easily calculated from the C–V curves

by integrating the capacitance with respect to VGS and is one of the best

indicators of VPO because the distribution of Q determines whether the FET

operates in the linear or saturation regions. Q is given by

Q = −

∫
VGS

V A

GS

(C − Cinj)dV, (1)

where V A
GS is the voltage when capacitance reaches the Cinj, that is, the

injected holes accumulate under the source electrode [see Fig. 2(d)]. V A
GS
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was set to be −4 V for Pn/TTC-FET and −1.5 V for Pn-FET. In order

to focus on the hole accumulation property in channel region, an integrated

capacitance was estimated by subtracting Cinj from observed capacitance.

Figure 4(a) shows the plots of Q as a function of VGS estimated by Eq.

(1). In the case of VDS = 0 V, Q linearly increases and the slope (≈ 2.97

nC/V) corresponds to Cacc−Cinj = 2.96 nF, simply indicating the charging of

the capacitor. In addition to this charging process, an another slope (≈ 0.046

nC/V) appears with decreasing VDS. Because this slope nearly agrees with

Cchn−Cinj = 0.036 nF, this result indicates that the amount of injected charge

to the channel region is estimated from the C–V curves without assumptions.

With a further decrease in VGS to the negative side, the slope of the Q–VGS

curves increases and corresponds with that where VDS = 0 V. This change

occurs because the holes accumulate under the drain electrode and the whole

insulator layer works as a capacitor. Therefore, by analyzing the variation

of Q for fixed VDS, the channel formation can be discussed in detail. For

example, when VGS = −20 V, Q decreases with VDS and finally saturates at

VDS < −18.5 V. This variation of Q as a function of VDS implies a change in

the operating regime from linear to saturation.

In order to understand the details of the hole accumulation process during

transistor operation, Q was replotted as a function of VDS in Fig. 4(b). The

value of Q was calculated when VGS was set to −10 V (circles), −20 V

(squares), −30 V (triangles) and −40 V (inverted triangles), and normalised

by Q at VDS = 0 V (Q0) in order to facilitate visualization. The solid

lines indicate the IDS–VDS (output) curves for the corresponding VGS. When

VGS = −20 V, Q decreases linearly for VDS > −20 V, suggesting the discharge
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of holes to the drain electrode due to the decrease in VDS. This behavior of

the accumulated holes corresponds well with that in the linear region. For

VDS < −20 V, Q becomes constant. Here this constant value in Fig. 4(b)

is referred to as Qsat (dashed line). This result suggests that the pinch-off

occurs in this region and the amount of the accumulated charge in the channel

region is saturated. From the intersection (marked by the vertical bar) of

the linear approximation functions in the linear and saturation regimes, VPO

was directly estimated for various VGS. The crosses on the output curves in

Fig. 4(b) indicate the drain current at VDS = VPO (IPODS ) when VGS was set to

be −10 V, −20 V and −30 V. According to GCA model, the VPO and IPODS

can be expressed by

VPO = VGS − VT, (2)

IPODS =
WCinsµ

2L
(VGS − VT)

2, (3)

where VT, Cins and µ show the threshold voltage, insulator capacitance per

unit area and field-effect mobility, respectively [13, 14, 15]. Figure 4(b) clearly

indicates that, with decreasing VGS, VPO linearly shifts to the negative VDS

side and IPODS nearly increases quadratically. These results strongly suggest

that the GCA model constructed for inorganic FETs can be properly applied

to analyze the operation mechanism of the Pn/TTC-FET.

3.3. Impact of insertion of TTC buffer layer on SiO2

For discussing the effect of the surface treatment of SiO2 by TTC, Pn-

FET without TTC layer is also evaluated by three-terminal IS. Figures 5(a)

and 5(b) show the three-terminal C–V and transfer curves at various VDS, re-

spectively. Compared with the three-terminal C–V curves of Pn/TTC-FET,
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the variation in the capacitance during the hole accumulation process under

the source electrode is stretched out. An increase in the sub-threshold swing

(SS) due to the decrease in the charge inside the device is expected. In ac-

tual, the SS increases from 0.75 V/decade in Pn/TTC-FET to 2.5 V/decade

in Pn-FET, suggesting a high contact resistance in Pn-FET or an increase

in the trap states in the channel region supported by capacitance-frequency

measurement (not shown). While the capacitance is changed from Cinj to

Cchn, only a shoulder structure is observed in Fig. 5(a) even if VDS decreases,

implying that the saturation condition is not entirely fulfilled. In the Q–VGS

curve in Fig. 5(c) estimated from Fig. 5(a) by using Eq. (1), when VDS is

changed from 0 V to −37.6 V, the saturation of Q at a certain VGS is not

clearly observed. The value of Q as a function of VDS and the output curves

are plotted in Fig. 5(d) and show that Q at VGS = −20 V, −30 V and −40

V does not become constant. This result clearly suggests that complete sat-

uration did not occur in the Pn-FET. Therefore, analysis based on the GCA

model should be carefully applied to OFETs.

In addition to the effect of the TTC on the hole accumulation charac-

teristics, another impact on the FET properties is also apparent. As can be

seen in Fig. 3(a), when VDS = −9.6 V, the capacitance for positive values

of VGS (> 5 V) agrees well with that for VDS = 0 V, indicating the deple-

tion condition as shown in Fig. 2(c). At values higher than or equal to

VDS = −18.5 V, the capacitance and IDS for the positive VGS region increase.

On the other hand, any increases in the capacitance and IDS in the positive

VGS region are not observed in Figs. 5(a) and 5(b). These results suggest

that the TTC layer passivates the electron traps on the SiO2 surface and
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enhances the electron injection and n-channel formation, as shown in the

inset [Fig. 3(a)] [16, 17, 18]. Because the simultaneous accumulation of hole

and electron is not achieved without VDS, our method is expected to be a

powerful technique to investigate the carrier behaviors in ambipolar FETs

and light-emitting transistors.

4. Conclusion

We proposed three-terminal C–V measurements of a pentacene-based

FETs during transistor operation by using a battery circuit for VDS. In ad-

dition to the hole injection and accumulation properties, a gradual increase

in the capacitance was observed in Pn/TTC-FET, suggesting the pinch-off

condition of the transistor. Amount of injected charges in the channel re-

gion from C–V curves was estimated and the validity of GCA model was

discussed. The battery-circuit is also useful to expand DCM for the three-

terminal method, which can be used to evaluate the channel formation and

annihilation processes separately during transistor operation [19]. The pro-

posed method can be used as a tool for clarifying the operating mechanism

of OFETs, including ambipolar and light-emitting transistors.
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Figure captions:

Figure 1: (a) Schematic illustration of the device structure and experimental setup. IAC

between the isolated battery circuit and gate electrode is measured under a bias of VGS

and the VDS is supplied by the battery circuit. This setup enables impedance spectroscopy

and displacement current measurement for three-terminal devices such as an operating

transistor. (b) Chemical structures of pentacene (Pn) and C44H90; tetratetracontane

(TTC). (c) AFM image of the TTC (30 nm) on the SiO2/p
+-Si substrate. The bottom

figure shows the cross-section view of the TTC surface along the solid line in the AFM

image.

Figure 2: (a) Three-terminal IS curves of Pn/TTC-FET in VDS = 0 V (circles) and

VDS = −28.0 V (inverted triangles). (b) IDS − VGS curves in VDS = 0 V (circles) and

VDS = −28.0 V (inverted triangles). (c-f) Schematic view of the carrier distribution

during the measurement in (c) depletion, (d) hole accumulation immediately under the

source electrode, (e) hole accumulation under the source electrode and channel region and

(f) hole accumulation over the pentacene/insulator interface. Cdep, Cinj, Cchn and Cacc

show the capacitance value in various carrier accumulation conditions as shown in (c), (d),

(e) and (f), respectively.
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Figure 3: (a) Three-terminal IS curves of Pn/TTC-FET in VDS = 0 V (circles), −9.6

V (triangles), −18.5 V (squares), −28.0 V (inverted triangles) and −37.6 V (diamonds).

(b) IDS − VGS curves for corresponding VDS. Insets show the carrier distribution in hole

injection from source electrode in negative VGS and electron injection from the drain

electrode in positive VGS.

Figure 4: (a) The amount of injected holes as a function of VGS. (b) Plots of the amount

of injected holes normalized by that in VDS = 0 V and IDS as a function of VDS. VGS

was set to be −10 V (filled circles), −20 V (filled triangles), −30 V (filled squares) and

−40 V (filled inverted triangles). Solid lines show the IDS. Filled triangles indicate the

pinch-off voltages for corresponding VGS. Dashed line shows the amount of injected charge

normalized by that in VDS = 0 in channel region. Vertical bars and crosses indicate the

intersection of linear approximation functions in linear and saturation regimes and the

drain current at VDS = VPO, respectively.

Figure 5: (a) Three-terminal IS curves of Pn-FET without TTC layer in VDS = 0 V

(circles), −9.6 V (triangles), −18.5 V (squares), −28.0 V (inverted triangles) and −37.6

V (diamonds). (b) IDS − VGS curves for corresponding VDS. (c) Amount of injected holes

in Pn-FET without TTC layer as a function of VGS. (d) Plots of amount of injected holes

of Pn-FET without TTC layer normalized by that in VDS = 0 V and IDS as a function

of VDS. VGS was set to be −10 V (filled circles), −20 V (filled triangles), −30 V (filled

squares) and −40 V (filled inverted triangles). Solid lines show the IDS.
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